martes, 8 de junio de 2010

Contaminación por detergentes



Eutroficación

Los detergentes son semejantes a los jabones porque tienen en su molécula un extremo iónico soluble en agua y otro extremo no polar que desplaza a los aceites. Los detergentes tienen la ventaja, sobre los jabones, de formar sulfatos de calcio y de magnesio solubles en agua, por lo que no forman coágulos al usarlos con aguas duras. Además como el ácido correspondiente de los sulfatos ácidos de alquilo es fuerte, sus sales (detergentes) son neutras en agua.



Los detergentes son productos que se usan para la limpieza y están formados básicamente por un agente tensoactivo que actúa modificando la tensión superficial disminuyendo la fuerza de adhesión de las partículas (mugre) a una superficie; por fosfatos que tienen un efecto ablandador del agua y floculan y emulsionan a las partículas de mugre, y algún otro componente que actúe como solubilizante, blanqueador, bactericida, perfumes, abrillantadores ópticos (tinturas que dan a la ropa el aspecto de limpieza), etc.


Los detergentes sintéticos contienen sustancias surfactantes que ayudan en la penetración, remojo, emulsificación, dispersión, solubilización y formación de espuma. Todo esto ocurre en las interfases sólido-líquido y líquido-líquido.


La mayoría de los detergentes sintéticos son contaminantes persistentes debido a que no son descompuestos fácilmente por la acción bacteriana. A los detergentes que no son biodegradables se les llama detergentes duros y a los degradables, detergentes blandos.


El principal agente tensoactivo que se usa en los detergentes es un derivado del alquilbencensulfonato como, por ejemplo, el dodecilbencensulfonato de sodio (C12H25-C6H4-SO3Na) el cual puede hacer al detergente duro (no biodegradable, contaminante persistente) o blando (biodegradable, contaminante biodegradable), dependiendo del tipo de ramificaciones que tenga.


Una gran cantidad de detergentes son arilalquilsulfonatos de sodio que tienen como fórmula general, R-C6H4-SO3Na, es decir, son sales de ácidos sulfónicos aromáticos con una cadena alquílica larga. Si la cadena es ramificada no pueden ser degradados por los microorganismos, por lo que se dice que son persistentes, y causan grandes problemas de contaminación del agua de lagos, ríos y depósitos subterráneos. Los arilalquilsulfonatos que tienen cadenas lineales son biodegradables.


El uso de los compuestos tensoactivos en el agua, al ser arrojados a los lagos y ríos provocan la disminución de la solubilidad del oxígeno disuelto en el agua con lo cual se dificulta la vida acuática y además, como les quitan la grasa de las plumas a las aves acuáticas les provoca que se escape el aire aislante de entre las plumas y que se mojen, lo cual puede ocasionarles la muerte por frío o porque se ahogan, de manera semejante como les ocurre con los derrames de petróleo en el mar.


Los detergentes son productos químicos sintéticos que se utilizan en grandes cantidades para la limpieza doméstica e industrial y que actúan como contaminantes del agua al ser arrojados en las aguas residuales.


El poder contaminante de los detergentes se manifiesta en los vegetales acuáticos inhibiendo el proceso de la fotosíntesis originando la muerte de la flora y la fauna acuáticas. A los peces les produce lesiones en las branquias, dificultándoles la respiración y provocándoles la muerte.






DETERGENTES DE POLIFOSFATOS






Un componente de los detergentes sólidos es el metafosfato llamado tripolifosfato de sodio, Na5P3O10, que contiene al ion (O3 P-O-PO2-O-PO3)5-. El ion trifosfato es de gran utilidad porque forma complejos solubles con los iones calcio, fierro, magnesio y manganeso, quitando las manchas que estos ocasionan en la ropa y ayudan a mantener en suspensión a las partículas de mugre de manera que pueden ser eliminadas fácilmente por el lavado.


A los aditivos de fosfato en los detergentes como el tripolifosfato de sodio se les llama formadores de fosfato y tienen tres funciones, primero actúan como bases haciendo que el agua del lavado sea alcalina (pH alto), lo cual es necesario para la acción detergente; segundo los fosfatos reaccionan con los iones calcio y magnesio del agua dura de manera que no actúan con el detergente y tercero ayudan a mantener las grasas y el polvo en suspensión, lo que facilita que sean eliminados.


En los detergentes líquidos se utiliza el pirofosfato de sodio (Na4P2O7) o de potasio porque se hidroliza en el ion fosfato (PO43-) a menor rapidez que el tripolifosfato de sodio.


Los detergentes hechos a base de fosfatos provocan un efecto destructor en el medio ambiente porque aceleran el proceso de eutroficación o eutrofización de las aguas de lagos y ríos. Como el uso de detergentes fosfatados ha generado problemas muy graves en el agua, algunos países han prohibido el uso de detergentes de este tipo.






AGUAS CON DETERGENTES Y ALGAS






Los detergentes después de ser utilizados en la limpieza doméstica e industrial son arrojados a las alcantarillas de las aguas residuales y se convierten en fuente de contaminación del agua.


Las algas son plantas acuáticas que se pueden percibir como un limo verde azul sobre la superficie de las aguas estancadas. Las algas, al igual que las demás plantas, almacenan energía mediante el proceso de fotosíntesis por lo que requieren de la luz solar para consumir el bióxido de carbono y liberar el oxígeno. Al igual que otras plantas, las algas necesitan también de otros elementos químicos nutritivos inorgánicos como potasio, fósforo, azufre y fierro.


La cantidad de algas que una cierta extensión de agua, como un lago, puede soportar depende de los elementos nutritivos inorgánicos que puede proporcionar y la acumulación de estos elementos depende de la cantidad de sales que arrastren las diferentes corrientes de agua al lago. Las algas crecen rápidamente cuando la cantidad de elementos nutritivos es abundante y pueden llegar a cubrir la superficie del agua con gruesas capas, y a medida que algunas algas mueren se convierten en alimento de las bacterias.


Como las bacterias consumen oxígeno para descomponer a las algas, provocan que la disminución de oxígeno llegue a un nivel que es incapaz de soportar otras formas de vida, que es indispensable para que no desaparezca el ecosistema. Por ejemplo, donde hay peces como la lobina y la perca que son útiles para el hombre, disminuyen o desaparecen, dejan el lugar a otras formas de vida menos útiles al hombre como el siluro, sanguijuelas y gusanos que se alimentan de basura.






LA EUTROFICACIÓN Y SU CONTROL






En aguas relativamente tranquilas, como lagos y lagunas, los vegetales acuáticos proliferan debido a la presencia de elementos nutritivos como nitratos y fosfatos que actúan como fertilizantes. Las principales fuentes de nutrientes son las aguas negras y los escurrimientos agrícolas que originan el crecimiento masivo de algas y lirios, que genera grandes cantidades de masas vegetales sobre las aguas y su posterior acumulación sobre las riberas. Cuando las plantas mueren, para su descomposición consume el oxígeno disuelto en el agua provocando condiciones anaeróbicas.


La eutroficación o eutrofización (del griego eú, bien, y trophé, alimentación) es un proceso natural de envejecimiento de agua estancada o de corriente lenta con exceso de nutrientes y que acumula en el fondo materia vegetal en descomposición. Las plantas se apoderan del lago hasta convertirlo en pantano y luego se seca. Los problemas se inician cuando el hombre contamina lagos y ríos con exceso de nutrientes que generan la aceleración del proceso de eutroficación, que ocasiona el crecimiento acelerado de algas, la muerte de peces y demás flora y fauna acuática, generando condiciones anaeróbicas.






El proceso de eutroficación resulta de la utilización de fosfatos y nitratos como fertilizantes en los cultivos agrícolas, de la materia orgánica de la basura, de los detergentes hechos a base de fosfatos, que son arrastrados o arrojados a los ríos y lagos son un problema muy grave para las aguas estancadas cerca de los centros urbanos o agrícolas. Durante las épocas cálidas la sobrecarga de estos productos químicos, que sirven de nutrientes, generan el crecimiento acelerado de vegetales como algas , cianobacterias, lirios acuáticos y lenteja de agua, las cuales al morir y ser descompuestas por las bacterias aeróbicas provocan el agotamiento del oxígeno disuelto en la capa superficial de agua y causan la muerte de los diferentes tipos de organismos acuáticos que consumen oxígeno, en las aguas de los lagos y ríos. Lago eutrófico es aquel de poca profundidad y poco contenido de oxígeno disuelto pero rico en materias nutritivas y materia orgánica.



NOM-002-ECOL-1996



Norma Oficial Mexicana NOM-002-ECOL-1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal.
NORMAS DEL AGUA


NOM-001-ECOL-1996
Norma Oficial Mexicana NOM-001-SERMANAT-1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales.
NOM-001-ECOL-1996



NOM-001-SEMARNAT-1996


Área responsable del diseño de la norma:


DIRECCIÓN GENERAL DEL SECTOR PRIMARIO Y RECURSOS NATURALES






LÍMITES MÁXIMOS PERMISIBLES DE CONTAMINANTES EN LAS DESCARGAS DE AGUAS RESIDUALES EN AGUAS Y BIENES NACIONALES. (ACLARACIÓN D.O.F. 30-ABRIL-1997).




NOM-002-ECOL-1996



NOM-002-SEMARNAT-1996


Área responsable del diseño de la norma:






DIRECCIÓN GENERAL DEL SECTOR PRIMARIO Y RECURSOS NATURALES


LÍMITES MÁXIMOS PERMISIBLES DE CONTAMINANTES EN LAS DESCARGAS DE AGUAS RESIDUALES A LOS SISTEMAS DE ALCANTARILLADO URBANO O MUNICIPAL.










NOM-003-ECOL-199


NOM-003-SEMARNAT-1997


Área responsable del diseño de la norma:


DIRECCIÓN GENERAL DEL SECTOR PRIMARIO Y RECURSOS NATURALES

PROPIEDADES DEL AGUA:


1. FÍSICAS






El agua es un líquido inodoro e insípido. Tiene un cierto color azul cuando se concentra en grandes masas. A la presión atmosférica (760 mm de mercurio), el punto de fusión del agua pura es de 0ºC y el punto de ebullición es de 100ºC, cristaliza en el sistema hexagonal, llamándose nieve o hielo según se presente de forma esponjosa o compacta, se expande al congelarse, es decir aumenta de volumen, de ahí que la densidad del hielo sea menor que la del agua y por ello el hielo flota en el agua líquida. El agua alcanza su densidad máxima a una temperatura de 4ºC,que es de 1g/cc.










Su capacidad calorífica es superior a la de cualquier otro líquido o sólido, siendo su calor específico de 1 cal/g, esto significa que una masa de agua puede absorber o desprender grandes cantidades de calor, sin experimentar apenas cambios de temperatura, lo que tiene gran influencia en el clima (las grandes masas de agua de los océanos tardan más tiempo en calentarse y enfriarse que el suelo terrestre). Sus calores latentes de vaporización y de fusión (540 y 80 cal/g, respectivamente) son también excepcionalmente elevados.






2. QUÍMICAS










El agua es el compuesto químico más familiar para nosotros, el más abundante y el de mayor significación para nuestra vida. Su excepcional importancia, desde el punto de vista químico, reside en que casi la totalidad de los procesos químicos que ocurren en la naturaleza, no solo en organismos vivos, sino también en la superficie no organizada de la tierra, así como los que se llevan a cabo en el laboratorio y en la industria, tienen lugar entre sustancias disueltas en agua, esto es en disolución. Normalmente se dice que el agua es el disolvente universal, puesto que todas las sustancias son de alguna manera solubles en ella.






No posee propiedades ácidas ni básicas, combina con ciertas sales para formar hidratos, reacciona con los óxidos de metales formando ácidos y actúa como catalizador en muchas reacciones químicas.






Características de la molécula de agua:






La molécula de agua libre y aislada, formada por un átomo de Oxigeno unido a otros dos átomos de Hidrogeno es triangular. El ángulo de los dos enlaces (H-O-H) es de 104,5º y la distancia de enlace O-H es de 0,96 A. Puede considerarse que el enlace en la molécula es covalente, con una cierta participación del enlace iónico debido a la diferencia de electronegatividad entre los átomos que la forman.


















La atracción entre las moléculas de agua tiene la fuerza suficiente para producir un agrupamiento de moléculas. La fuerza de atracción entre el hidrógeno de una molécula con el oxígeno de otra es de tal magnitud que se puede incluir en los denominados enlaces de PUENTE DE HIDRÓGENO. Estos enlaces son los que dan lugar al aumento de volumen del agua sólida y a las estructuras hexagonales de que se habló más arriba.

Control de la Temperatura


l Muy importante el control de la temperatura,
a continuación vamos a comparar la eficacia
de depuración en función a la temperatura
del sistema biológico aerobio
PROCESO COMPLETO


l El proceso completo consta de un decantador
primero, un tratamiento biológico aerobio (los
biodiscos o biocilindros), y un decantador
secundario. El decantador primario es un elemento
que actúa para eliminar la contaminación formada
por la fracción sedimentable y los flotantes, a un
bajo coste energético. El tratamiento debe ir
precedido de un buen sistema de desbaste,
desarenado y desengrasado.
IMPACTO AMBIENTAL


l El consumo de energía es bajo; si el
conjunto está equilibrado, es el

indispensable para hacerlo girar lentamente.
Dependiendo del modelo y del fabricante

puede estimarse en menos de 2,5 w/h, otros
autores dan la cifra de 0,4 hp x h/kg DBO
eliminada. La baja energía suministrada se
traduce en un nivel sonoro bajo. El impacto
ambiental es bajo
FUNDAMENTO


l Cuando los biodiscos se sumergen en agua a depurar


y se ponen en funcionamiento, la biomasa formada por


los microorganismos y otros sistemas biológicos se va


fijando a la superficie del soporte (lo hace en más de


un 95 %) y se va exponiendo al aire a medida que el


disco va girando, después se sumergen en agua de


nuevo para tomar contacto con la materia orgánica. Se


suceden nuevos periodos de exposición al aire


(oxigenación), e inmersión en el agua (alimentación).


Así se va formando la biopelícula a expensas de la


materia orgánica del agua a tratar. La concentración de


esta película puede llegar a los 30.000 mg/l. Esta alta


concentración es la encargada de la alta eficacia de


depuración en tiempos hidráulicos del sistema cortos
BIODISCOS Y BIOCILINDROS



l Dentro de los CBR cabe distinguir entre Biodiscos y


Biocilindros. En los Biodiscos el soporte para la


fijación bacteriana está constituido por un conjunto


de discos de material plástico de 2 a 4 m de


diámetro. Los discos se mantienen paralelos y a


corta distancia entre ellos gracias a un eje central


que pasa a través de sus centros.


l Los Biocilindros constituyen una modificación del


sistema de Biodiscos, en ellos el sistema es una


jaula cilíndrica perforada, que alberga en su interior


un material soporte de plástico, al que se fija la


biomasa bacteriana
 
MOTORES


l Motor que hace girar al sistema a una

velocidad inferior a 5 vueltas por minuto
CONTACTORES BIOLÓGICOS


ROTATIVOS Y BIODISCOS

DESCRIPCIÓN


l Los biodiscos giran a baja velocidad (menor de 5

rpm), alrededor de un eje perpendicular a todos

ellos.

l A estos sistemas se les consideran un sistema de

biomasa fija, pues los microorganismos

responsables de la depuración trabajan

(mayoritariamente) adheridos a los discos que están

fabricados en diversos materiales plásticos que los

hacen fuertes y ligeros
3:1-Aguas grises y negras-







-las aguas grises son: todas aquellas que son usadas para nuestra higiene corporal o de nuestra casa y sus utensilios. Básicamente son aguas con jabón, algunos residuos grasos de la cocina y detergentes biodegradables. Es importante señalar que las aguas grises pueden transformarse en aguas negras si son retenidas sin oxigenar en un tiempo corto. El tratamiento es sencillo si contamos con el espacio verde suficiente, aprovechando la capacidad de oxigenación y asimilación de las plantas del jardín o el huerto mediante un sistema de "drenaje de enramado".






En caso de no contar con el espacio suficiente, las aguas grises deben ser sometidas a un tratamiento previo que reduzca el contenido de grasas y de materia orgánica en suspensión, para posteriormente ser mezcladas con las aguas negras y pasar a un tren de tratamiento.


Las aguas negras son las que resultan de los sanitarios y que por su potencial de transmisión de parásitos e infecciones conviene tratar por separado con sistemas de bioreactores.














3:2- Sistemas básicos de tratamiento casero-






Generalmente al construir se piensa poco en la disposición de las aguas residuales, por este motivo se suele recurrir a referencias de ultima pagina en los manuales de construcción o se enfrenta uno a una variedad de recetas y métodos en los que no existe una verdadera comprensión de los procesos que se promueven y que se presentan como soluciones infalibles. Por otra parte algunos sistemas bien diseñados para condiciones especificas medioambientales no se adaptan otras condiciones o son interpretados y adaptados de manera poco escrupulosa. Un ejemplo claro de esta situación es el de las fosas sépticas.






Es importante comprender que el sistema de tratamiento más adecuado debe ser el que considere las condiciones específicas del medio ambiente e incluso de las culturales. La instalación de los sistemas de tratamiento no solo debe contemplar eficacia en si de la depuración, sino también debe analizar la relación de los elementos circundantes, las necesidades particulares, el costo, el mantenimiento, el rehúso, y la utilización o disposición de los sub. productos de la depuración.






3:2:1-la fosa séptica-






Es común encontrar una gama muy amplia de formas de disponer el agua con el nombre genérico de fosa séptica, sin embargo no todas cumplen con el objetivo de liberar los acuíferos de contaminación, debido que suelen confundirse con pozos negros o de absorción, en los que las aguas son infiltradas al suelo sin un verdadero tratamiento. También suelen llamarse de este modo a tanques de sedimentación y almacenamiento que son vaciados periódicamente, para trasladarlos a un sitio donde se puedan arrojar con impunidad.






El modelo de fosa mas funcional es el tanque de tres cámaras con una secuencia de tratamiento que consiste en primer lugar en una cámara de sedimentación que en algunos casos también cumple la función de trampa de grasas, de allí el agua pasa a una cámara con condiciones anaerobias donde se reduce la carga orgánica disuelta. La tercera cámara cumple las funciones de sedimentador secundario para clarificar el agua antes de ser dispuesta en un campo de oxidación. El problema básico de las fosas sépticas es que suelen acumular lodos hasta el punto de saturación, lo cual se incrementa si la fase anaerobia no funciona correctamente. El efluente debe necesariamente ser tratado en un campo de oxidación antes de infiltrar al suelo y los lodos extraídos necesitan tratamiento adicional.






3:2:2-sistema mixto-






Los sistemas mixtos de tratamiento domiciliario son aquello en los que se arman con diferentes sistemas de tratamiento con el fin de lograr la máxima remoción en el menor espacio posible estos pueden combinar digestores para aguas negras, lechos vegetales, sistemas de enramado, aireadotes, etc. Básicamente consisten en la adaptación practica de los diferentes sistemas en un todo integrado que se adapte a las necesidades especificas de cada lugar.










Biodigestores anaerobios:






El uso de digestores anaerobios es más común cada dia, ya sea para el tratamiento de excretas animales, la producción de biogás, la purificación de aguas residuales, y la elaboración de biofertilizantes.


Existen varios tipos de biodigestores y se clasifican según el régimen de carga y la dirección del flujo en su interior.


Régimen:


-flujo continuo: son los que reciben su carga por medio de una bomba que mantiene una corriente continua.


-flujo semi-continuo son los que reciben una carga fija cada día y aportan la misma cantidad


-estacionarios son los que se cargan de una sola ves y pasado el tiempo de retención se vacían completamente.






Dirección:






Flujo horizontal (tubulares) generalmente con forma de salchicha se cargan por un extremo y la carga diaria va desplazando por su interior la precedente.


Flujo ascendente la carga se inyecta en el fondo del recipiente y fluye hacia la parte superior.



2- Tratamiento de aguas residuales





2:1-pasos de tratamiento:




En el tratamiento de aguas residuales se pueden distinguir hasta cuatro etapas que comprenden procesos químicos, físicos y biológicos:





- Tratamiento preliminar, destinado a la eliminación de residuos fácilmente separables y en algunos casos un proceso de pre-aireación.



- Tratamiento primario que comprende procesos de sedimentación y tamizado.



- Tratamiento secundario que comprende procesos biológicos aerobios y anaerobios y físico-químicos (floculación) para reducir la mayor parte de la DBO.



- Tratamiento terciario o avanzado que está dirigido a la reducción final de la DBO, metales pesados y/o contaminantes químicos específicos y la eliminación de patógenos y parásitos.



2:2.- Sistemas de tratamiento biológico:



Los objetivos del tratamiento biológico son tres: (1º) reducir el contenido en materia orgánica de las aguas, (2º) reducir su contenido en nutrientes, y (3º) eliminar los patógenos y parásitos.

Estos objetivos se logran por medio de procesos aeróbicos y anaeróbicos, en los cuales la materia orgánica es metabolisada por diferentes cepas bacterianas.



2:2:1.- estanques de lodos activos:



El tratamiento se proporciona mediante difusión de aire por medios mecánicos en el interior de tanques. Durante el tratamiento los microorganismos forman floculos que, posteriormente, se dejan sedimentar en un tanque, denominado tanque de clarificación. El sistema básico comprende, pues, un tanque de aireación y un tanque de clarificación por los que se hace pasar los lodos varias veces.

Los dos objetivos principales del sistema de lodos activados son (1º) la oxidación de la materia biodegradable en el tanque de aireación y (2º) la floculación que permite la separación de la biomasa nueva del efluente tratado. Este sistema permite una remoción de hasta un 90% de la carga orgánica pero tiene algunas desventajas: en primer lugar requiere de instalaciones costosas y la instalación de equipos electromecánicos que consumen un alto costo energético. Por otra parte produce un mayor volumen de lodos que requieren de un tratamiento posterior por medio de reactores anaeróbicos y/o su disposición en rellenos sanitarios bien instalados.



2:2:2.-Tratamiento anaerobio-



Consiste en una serie de procesos microbiológicos, dentro de un recipiente hermético, dirigidos a la digestión de la materia orgánica con producción de metano. Es un proceso en el que pueden intervenir diferentes tipos de microorganismos pero que está dirigido principalmente por bacterias. Presenta una serie de ventajas frente a la digestión aerobia: generalmente requiere de instalaciones menos costosas, no hay necesidad de suministrar oxígeno por lo que el proceso es más barato y el requerimiento energético es menor. Por otra parte se produce una menor cantidad de lodo (el 20% en comparación con un sistema de lodos activos), y además este último se puede disponer como abono y mejorador de suelos. Además es posible producir un gas útil.

Para el tratamiento anaerobio a gran escala se utilizan rectores de flujo ascendente o U.S.B. (Por sus siglas en ingles) con un pulimento aerobio en base de filtros percoladores y humedales.



2:2:3- Humedales artificiales-



Este sistema consiste en la reproducción controlada, de las condiciones existentes en los sistemas lagunares someros o de aguas lenticas los cuales, en la naturaleza, efectúan la purificación del agua. Esta purificación involucra una mezcla de procesos bacterianos aerobios-anaerobios que suceden en el entorno de las raíces de las plantas hidrófilas, las cuales a la ves que aportan oxigeno consumen los elementos aportados por el metabolismo bacterial y lo transforman en follaje.



Este sistema es el más amigable desde el punto de vista ambiental ya que no requiere instalaciones complejas, tiene un costo de mantenimiento muy bajo y se integra al paisaje natural propiciando incluso refugio a la vida silvestre.

Quizás se podría mencionar como única desventaja la mayor cantidad de superficie necesaria.



3.- tratamiento de aguas a nivel domiciliario-



El tratamiento a nivel domiciliario obedece a los mismos principios que las grandes plantas depuradoras, sin embargo es posible mejorar la eficiencia en la relación costo x m3 de agua tratada, si se observan algunos principios básicos tales como la separación de las aguas grises y negras, el consumo racional y limitado de detergentes y la exclusión de productos químicos agresivos en la limpieza cotidiana. Es claro que la complejidad de un sistema apropiado de tratamiento a nivel casero esta en relación directa con nuestra cultura de consumo.
Definición de agua residual




Se denomina aguas servidas a aquellas que resultan del uso doméstico o industrial del agua. Se les llama también aguas residuales, aguas negras o aguas cloacales.


Son residuales pues, habiendo sido usada el agua, constituyen un residuo, algo que no sirve para el usuario directo; son negras por el color que habitualmente tienen.


Algunos autores hacen una diferencia entre aguas servidas y aguas residuales en el sentido que las primeras solo provendrían del uso doméstico y las segundas corresponderían a la mezcla de aguas domésticas e industriales.






En todo caso, están constituidas por todas aquellas aguas que son conducidas por el alcantarillado e incluyen, a veces, las aguas de lluvia y las infiltraciones de agua del terreno.


Para cuantificar el grado de contaminación y poder establecer el sistema de tratamiento mas adecuado, se utilizan varios parámetros expresados en la NOM.oficial:










1:2 Demanda bioquímica de oxigeno






Para medir la concentración de contaminantes orgánicos, en las aguas que resultan de el uso domestico el parámetro mas utilizado es la Demanda biológica de oxígeno o (DBO), esta se define como la concentración de oxigeno disuelto consumido por los microorganismos, presentes en el agua o añadidos a ella para efectuar la medida la medición, en la oxidación de toda la materia orgánica presente en la muestra de agua. Su valor debe ser inferior a 8 MG/l. Para ser considerada como potable. Generalmente en las aguas de origen domestico este valor fluctúa entre los 200 a 300 MG/l.
El uso de aguas residuales


La escasez cada vez mayor de las aguas dulces debido al crecimiento demográfico, a la urbanización y, probablemente, a los cambios climáticos, ha dado lugar al uso creciente de aguas residuales para la agricultura, la acuicultura, la recarga de aguas subterráneas y otras áreas. En algunos casos, las aguas residuales son el único recurso hídrico de las comunidades pobres que subsisten por medio de la agricultura. Si bien el uso de aguas residuales en la agricultura puede aportar beneficios (incluidos los beneficios de salud como una mejor nutrición y provisión de alimentos para muchas viviendas), su uso no controlado generalmente está relacionado con impactos significativos sobre la salud humana. Estos impactos en la salud se pueden minimizar cuando se implementan buenas prácticas de manejo.







Las guías para el uso seguro de aguas residuales en la agricultura deben encontrar el balance justo entre la maximización de los beneficios de salud pública y las ventajas de usar recursos escasos. Es necesario que las Guías sean lo suficientemente flexibles para poder adaptarlas a las condiciones locales, sociales, económicas y ambientales. Además, se deben implementar paralelamente con otras intervenciones de salud como la promoción de la higiene, los servicios de agua potable y saneamiento adecuados y otras medidas de atención primaria de la salud.






En 1989, la OMS publicó las Guías sobre el Uso Seguro de Aguas Residuales en la Agricultura y Acuicultura. Estas guías han repercutido significativamente en el reúso racional de aguas residuales y excretas en todos los países. Actualmente, estas guías se encuentran en revisión y serán publicadas en el año 2004.






- Copia del resumen ejecutivo de las Guías de 1989 [en inglés] [pdf 1.09Mb]






Documentos disponibles en la Internet:


Análisis de las aguas residuales para su uso en la agricultura


Documentos en preparación:


Guías para el uso seguro de aguas residuales y excretas en la agricultura y acuicultura, 2da. edición, volúmenes 1 y 2


Guías para el uso seguro de aguas residuales y excretas en la agricultura y acuicultura, (informe técnico) 2da. edición


Health aspects of aquifer recharge with reclaimed water (Aspectos de salud derivados de la recarga de acuíferos con agua recuperada

viernes, 4 de junio de 2010

CONTAMINACION DEL AGUA


¿Qué contamina el agua?Agentes patógenos.- Bacterias, virus, protozoarios, parásitos que entran al agua provenientes de desechos orgánicos.
Desechos que requieren oxígeno.- Los desechos orgánicos pueden ser descompuestos por bacterias que usan oxígeno para biodegradarlos. Si hay poblaciones grandes de estas bacterias, pueden agotar el oxígeno del agua, matando así las formas de vida acuáticas.


Sustancias químicas inorgánicas.- Acidos, compuestos de metales tóxicos (Mercurio, Plomo), envenenan el agua.
Los nutrientes vegetales pueden ocasionar el crecimiento excesivo de plantas acuáticas que después mueren y se descomponen, agotando el oxígeno del agua y de este modo causan la muerte de las especies marinas (zona muerta).


Sustancias químicas orgánicas.- Petróleo, plásticos, plaguicidas, detergentes que amenazan la vida.


Sedimentos o materia suspendida.- Partículas insolubles de suelo que enturbian el agua, y que son la mayor fuente de contaminación.
Sustancias radiactivas que pueden causar defectos congénitos y cáncer.
Calor.- Ingresos de agua caliente que disminuyen el contenido de oxígeno y hace a los organismos acuáticos muy vulnerables

Entre 6 y 8 vasos de agua diariamente son necesarios para la saludEl agua también es un alimento y un nutrimento líquido, formado por un volumen de oxígeno y 2 de hidrógeno.


Es un alimento, porque contiene sales minerales como sodio, potasio, flúor, magnesio y calcio, minerales que el cuerpo necesita para funcionar bien y recuperarse de su desgaste diario.
El agua es el compuesto más abundante en el organismo humano, forma parte de la sangre, la saliva, el sudor, las lágrimas, las hormonas, las enzimas, los jugos gástricos, la bilis, los intestinos y de todos los músculos.
La cantidad de agua del cuerpo humano varía según la edad, en un recién nacido representa el 85% de su peso corporal, en el adulto el 70% y en el anciano el 60%.
Es indispensable para todas las funciones vitales del organismo: la digestión, la respiración, la absorción y el transporte de nutrimentos y la eliminación de desechos del cuerpo.
Participa en la formación de los tejidos y ayuda a mantener la temperatura constante del cuerpo.

Todos los días eliminamos grandes cantidades de agua, por medio del sudor, la orina, durante la respiración, en el excremento y en menor cantidad por medio de las lágrimas y mocos, por ello es muy importante reponerla, ya que una persona no puede vivir mucho tiempo sin ella y cuando le llega a faltar puede sufrir deshidratación y si esta es muy severa, hasta la muerte.
Parte del agua que tenemos la produce el propio cuerpo, pero la mayoría la adquirimos a través de los alimentos y de los líquidos como caldos o jugos, pero principalmente del agua, que consumimos diariamente.
La necesidad de ingestión de agua varía según la edad, el estado de salud, la actividad física, la dieta habitual y el clima en que se vive, sin embargo se considera que dos litros de agua o entre 6 y 8 vasos de agua diariamente, ayudan a reponer toda la que perdemos cada día.
La falta de agua en el organismo causa deshidratación que es la falta de líquidos corporales suficientes para que el cuerpo lleve a cabo todas sus funciones como debe.
Pero el agua, a pesar de ser un líquido vital, es decir que se necesita para poder vivir, si no es potable y está limpia y hervida, puede causar serias enfermedades, porque es un medio en el que se desarrollan fácilmente muchos microbios.




El Ciclo del Agua
Se pudiera admitir que la cantidad total de agua que existe en la Tierra, en sus tres fases: sólida, líquida y gaseosa, se ha mantenido constante desde la aparición de la Humanidad. El agua de la Tierra - que constituye la hidrósfera - se distribuye en tres reservorios principales: los océanos, los continentes y la atmósfera, entre los cuales existe una circulación contínua - el ciclo del agua o ciclo hidrológico. El movimiento del agua en el ciclo hidrológico es mantenido por la energía radiante del sol y por la fuerza de la gravedad.
El ciclo hidrológico se define como la secuencia de fenómenos por medio de los cuales el agua pasa de la superficie terrestre, en la fase de vapor, a la atmósfera y regresa en sus fases líquida y sólida. La transferencia de agua desde la superficie de la Tierra hacia la atmósfera, en forma de vapor de agua, se debe a la evaporación directa, a la transpiración por las plantas y animales y por sublimación (paso directo del agua sólida a vapor de agua).

calidad del agua
 
El término calidad del agua es relativo, referido a la composición del agua en la medida en que esta es afectada por la concentración de sustancias producidas por procesos naturales y actividades humanas.
Como tal, es un término neutral que no puede ser clasificado como bueno o malo sin hacer referencia al uso para el cual el agua es destinada.
De acuerdo con lo anterior, tanto los criterios como los estándares y objetivos de calidad de agua variarán dependiendo de si se trata de agua para consumo humano (agua potable), para uso agrícola o industrial, para recreación, para mantener la calidad ambiental, etc
Los limites tolerables de las diversas sustancias contenidas en el agua son normadas por la Organización Mundial de la Salud (O.M.S.), la Organización Panamericana de la Salud (O.P.S.), y por los gobiernos nacionales, pudiendo variar ligeramente de uno a otro. Los valores que se presentan en las tablas de abajo son por lo tanto referenciales.


Propiedades Físicas Del Agua
1) Estado físico: sólida, liquida y gaseosa


2) Color: incolora


3) Sabor: insípida


4) Olor: inodoro


5) Densidad: 1 g./c.c. a 4°C


6) Punto de congelación: 0°C


7) Punto de ebullición: 100°C


8) Presión critica: 217,5 atm.


9) Temperatura critica: 374°C
El agua químicamente pura es un liquido inodoro e insípido; incoloro y transparente en capas de poco espesor, toma color azul cuando se mira a través de espesores de seis y ocho metros, porque absorbe las radiaciones rojas. Sus constantes físicas sirvieron para marcar los puntos de referencia de la escala termométrica Centígrada. A la presión atmosférica de 760 milímetros el agua hierve a temperatura de 100°C y el punto de ebullición se eleva a 374°, que es la temperatura critica a que corresponde la presión de 217,5 atmósferas; en todo caso el calor de vaporización del agua asciende a 539 calorías/gramo a 100°.



AGUA

El agua (del latín aqua) es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. En su uso más común, con agua nos referimos a la sustancia en su estado líquido, pero la misma puede hallarse en su forma sólida llamada hielo, y en forma gaseosa que llamamos vapor. El agua cubre el 71% de la superficie de la corteza terrestre.[2] En nuestro planeta, se localiza principalmente en los océanos donde se concentra el 96,5% del agua total, los glaciares y casquetes polares tiene el 1,74%, los depósitos subterráneos en (acuíferos), los permafrost y los glaciares continentales suponen el 1,72% y el restante 0,04% se reparte en orden decreciente entre lagos, la humedad del suelo, atmósfera, embalses, ríos y seres vivos.[3] Contrario a la creencia popular, el agua es un elemento bastante común en nuestro sistema solar y esto cada vez se confirma con nuevos descubrimientos. Podemos encontrar agua principalmente en forma de hielo; de hecho, es el material base de los cometas, y el vapor compone la cola de ellos.



Desde el punto de vista físico, el agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación, y desplazamiento hacia el mar. Los vientos transportan tanto vapor de agua como el que se vierte en los mares mediante su curso sobre la tierra, en una cantidad aproximada de 45.000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74.000 km³ anuales a causar precipitaciones de 119.000 km³ al año.[4]
Se estima que aproximadamente el 70% del agua dulce se consume en la agricultura.[5] El agua en la industria absorbe una media del 20% del consumo mundial, empleándose como medio en la refrigeración, el transporte y como disolvente de una gran variedad de sustancias químicas. El consumo doméstico absorbe del orden del 10% restante.[6]
El agua potable es esencial para todas las formas de vida, incluida la humana. El acceso al agua potable se ha incrementado sustancialmente durante las últimas décadas en la práctica totalidad de la superficie terrestre.[7] [8] Sin embargo estudios de la FAO, estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes del 2030; en esos países es urgente un menor gasto de agua en la agricultura modernizando los sistemas de riego.[6]